SISTEMAS INTELIGENTES DE MANTENIMIENTO

Grupo de investigación: I+DT Organización Industrial ESCUELA SUPERIOR DE INGENIEROS, UNIVERSIDAD DE SEVILLA

Assets Heath Indexing Model. Implementation in a Process Pumps Fleet.

Adolfo Crespo Márquez

Full Prof. of Industrial management . University of Seville. Spain President of INGEMAN

Content

- 1. Concept of Asset Health Index
- 2. Requirements for the AHI method and model
- 3. Conceptual basis
- 4. Review of relevant international models
- 5. Spanish Network AHI Model
- 6. Implementation

ingen

SOCIACIÓN PARA EL DESARROLL

Asset Health is a measure of the condition of an asset and the proximity to the end of its useful life, as a consequence of its deterioration.

In order to take account of future deterioration it is necessary for the Methodology to:

- i) include age based elements within the calculation of Asset Health; and
- ii) use an Index scale for the evaluation of Asset Health.

As the health of an asset deteriorates (i.e. its condition worsens), the likelihood that it will fail due to condition increases.

It is important to understand the differences between the study of **functional failures and corrective maintenance** versus **long-term asset degradation and asset replacement**.

Functional failures are associated with failure modes in the ancillary systems that affect operation and reliability of the asset well before its end-of-life.

These failures do not normally affect the life of the asset itself, if detected early and corrected. Defects are routinely identified during inspection and dealt with by corrective maintenance activities to ensure continued operation of the asset.

Long-term degradation is generally less well defined and it is not easily determined by routine inspections.

The purpose of asset health assessment is to detect and quantify long-term degradation and to provide a means of quantifying remaining asset life.

This includes identifying assets that are at or near end-of-life and assets that are at high risk of generalized failure that will require major capital expenditures to either refurbish or replace the assets.

Understanding relationships:

- Degradation Mechanism
- Failure Modes
- Failure Symptoms
- Failure Rates

Figure 1. Two life curves for the same equipment under two different maintenance scenarios (Operating conditions are assumed to be the same)

Figure Explaining Asset Value and Cost through Life cycle

In the Spanish gas network the Network Asset Indices comprise two components:

- Criticality Index which relates to Consequences of Failure (risk); and
- ii. Health Index which relates to Asset Health and Probability of Failure;

		Water Bath Heaters	Boiler packages
HII	New or as new	WBHs under 10 years old	Boiler packages under five years old
HI2	Good or serviceable condition	WBHs 10 to 20 years old.	Boiler package/heat exchangers, five to ten years old
HI3	Deterioration, requires assessment or monitoring	WBHs 20 to 30 years old	Boiler package/heat exchangers, 10 to 15 years old.
HI4	Material deterioration, intervention requires consideration	WBHs over 30 years old	Boiler package/heat exchangers, between 15 to 20 years old
HI5	End of serviceable life, intervention required	WBHs with over fifty faults in last 5 years.	Boilers packages over 20 years old

Criticality

Figure 11 Combining AHI and Criticality

Common practice for maintenance and assets Deloitte. Constant Derivedy Association or reactions management excellence Sub Appendix SP Energy Networks 2015-2023 Busine NGN Asset Integrity Investment Updated March 2014 WALES&WEST Methodology Annex Asset Management Health Inde PA Consulting A collaborative innovation proje Asset Heal **DNO COMMON** A utility indus NETWORK ASSET **Asset Health Modelling (Pipe** INDICES METHODOLOGY **Crossings & Block V** A collaboration between: Wales & West Utilities (Lead GDN) Northern Gas Networks National Grid Gas Plc SGN **Pipeline Integrity Engineers Ltd** A common framework of definitions, principles and calculation methodologies, adopted across all GB Distribution Network Operators, for the assessment,

forecasting and regulatory reporting of Asset Risk.

Proper control reinvestments in assets with high capitalization is now feasible.

+

Asset's depreciation

Combining AHI and Criticality

Determining the Economic End of Life as the Optimum date to retire an asset

AHI Model Requirements

- 1. It applies to assets of high capitalization of all the infrastructure.
- 2. Should offer support to strategic decisions on reinvestment, maintenance and extension of cycle of life, etc., of such assets.
- 3. Coherent and integrated methods like criticality analysis or LCCA.
- 4. Should put into value information today in business IT systems.
- 5. Should be innovative, and based on international best practices.
- 6. For easy implementation in business day-to-day operations.
- 7. Should summarize the health of the assets in standardized form
- 8. Should help to investigate those factors impacting on network assets degradation.

Relevant Models

In the simplest case a generic AHI model contains:

- Details of the condition of the asset (Data).
- Data is processed with a function resulting scores.
- These scores are weighted relatively together, and
- They are summarized to calculate the AHI.

Relevant Models

Model 5: UK DNO COMMON NETWORK ASSET INDICES METHODOLOGY

- A framework of common reference,
- Principles and calculation methodology adopted by all British network operators for the assessment, prediction and report regulatory risk of assets.
- In compliance with the requirements of the standard condition 51 (SLC 51) of the electricity distribution license for RIIO-ED1 (1 April 2015 to 31 March 2023).

Spanish Network AHI Model

- Departs from model of the UK DNO
- Reorders the introduction of data in degradation and condition models
- Considers the impact of changes in Functional Locations duty
- Changes in the condition of the equipment only accelerate its deterioration
- Distinction is made between indications or evidence on the health of the assets is changing calculation algorithms

Spanish Network AHI Model

Spanish Network AHI Model

• Relationship between the asset's health (AHI or HI) and the Probability of Failure (PoF).

LNG Plant Primary Pumps Case Study

Selected Assets in LNG Plant in Huelva:

• Pumps GA 101 A y GA 101 B in Tank FB-101

• Pumps GA 231 A y GA 231 B in Tank FB-121

MTB Major Maintenance = **15.930 hrs**.

Different duty factors since they have functional locations in different tanks and they are different pump models.

Description of the	Asset Functio	nal Location	Asse	et individual	Load Factor	Location factor		
Location	Instalation	TAG	Manufacturer	Model	Expected Load	Nominal Load	Expected/Nominal	Inmersion in LNG Tank
Huelva Plant	FB-101	GA-101 A	EBARA CRYODINAMICS	4ECR-123	64	97	0,66	1
Huelva Plant	FB-101	GA-101 B	EBARA CRYODINAMICS	4ECR-123	64	97	0,66	1
Huelva Plant	FB-121	GA-231 A	EBARA CRYODINAMICS	8ECR-152	253	300	0,84	1
Huelva Plant	FB-121	GA-231 B	EBARA CRYODINAMICS	8ECR-152	253	300	0,84	1

Pumps data compilation & input to the model

- 1. Manufacturer specifications:
 - Recommended pump flow ranges for expected operation y selected location
 - Recommended operation temperature.
- 2. Warning and Alarm levels in the plant control system :
 - For operation temperature ranges.
 - Warning and shutdown levels in LNG Tanks.
- 3. Data coming from the business "health matrix" information:
 - Equipment operating time.
 - Operating time since last major maintenance.
 - N° of pump Start-Ups.
- 4. Equipment Hr-meter:
 - N° of major maintenance.
- 5. PI extracted data:
 - Evolution of Variables: flow, impulsion temperature, tank level, power & hrs.

Sample data: Primary LNG Tank Pumps

1	FECHA DE INICIO	01/01/2015 0:00													
2	FECHA DE FIN	01/12/2016 0:00													
3	INTERVALO (m)	1 d													
4	Nº TAG UTILIZADOS	8			CA 10	14 A					Trim	estre 1		Trime	estre 2
5	TAG 1	HUE-FIC-1110_PV	Caudal		<u>GA-IQ</u>	<u> </u>					01/01/2015 0:00	31/03/2015 0:00	126,28	01/04/2015 0:00	30/06/2015 0:00
6	TAG 2	HUE-PI-1023	Presión												
7	TAG 3	HUE-II-1001A	Intensidad								Trime	estre 1		Trime	estre 2
8	TAG 4	HUE-JI-1001A	Potencia								01/01/2016 0:00	31/03/2016 0:00	256,90	01/04/2016 0:00	30/06/2016 0:00
9	TAG 5	HUE-TI-1017-C	T ^a Tanque												
10	TAG 6	HUE-TI-1021	T ^a salida de	GNL											
11	TAG 7	HUE-REN-GA101A	Rendimiento									0,659793814			
12	TAG 8	HUE-LI-1008	Nivel tanque												
13	Hrs,	Flow,	Pressure	Amps	Power	Temp in	i Temp o	ut Perf,	Tank	level A	vail ∆Te	mp			
15		Load			DOTENCI	Tª 🔻		Dondimon *			·	C			
16	FECHA-NUKA	CAUDAL	PRESION	INTENSIDAD	PUTENCIA	ASPIRACION	1º IMPULSION	Renumento	wwei tanque	En operacio	mento de temp	e Carga rear			
17															
	01/01/2015	5,35	0,24	0,56	0,41	-158,71	-157,30	0,00	17.369,30	No	1,41	0			
18	01/01/2015 02/01/2015	5,35 4,80	0,24 0,25	0,56 0,58	0,41 0,42	-158,71 -158,46	-157,30 -156,70	0,00 0,00	17.369,30 19.543,26	No No	1,41	0			
18 19	01/01/2015 02/01/2015 03/01/2015	5,35 4,80 2,68	0,24 0,25 0,26	0,56 0,58 0,58	0,41 0,42 0,44	-158,71 -158,46 -158,40	-157,30 -156,70 -123,50	0,00 0,00 0,00	17.369,30 19.543,26 21.673,64	No No No	1,41 1,76 34,90	0			
18 19 20	01/01/2015 02/01/2015 03/01/2015 04/01/2015	5,35 4,80 2,68 2,97	0,24 0,25 0,26 0,26	0,56 0,58 0,58 0,58	0,41 0,42 0,44 0,41	-158,71 -158,46 -158,40 -158,40	-157,30 -156,70 -123,50 -122,50	0,00 0,00 0,00 0,00	17.369,30 19.543,26 21.673,64 21.818,52	No No No	1,41 1,76 34,90 35,90	0 0 0 0			
18 19 20 21	01/01/2015 02/01/2015 03/01/2015 04/01/2015 05/01/2015	5,35 4,80 2,68 2,97 2,97	0,24 0,25 0,26 0,26 0,25	0,56 0,58 0,58 0,58 0,58 0,61	0,41 0,42 0,44 0,41 0,43	-158,71 -158,46 -158,40 -158,40 -158,54	-157,30 -156,70 -123,50 -122,50 -120,70	0,00 0,00 0,00 0,00 0,00	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93	No No No No	1,41 1,76 34,90 35,90 37,84	0 0 0 0			
18 19 20 21 22	01/01/2015 02/01/2015 03/01/2015 04/01/2015 05/01/2015 06/01/2015	5,35 4,80 2,68 2,97 2,97 2,66	0,24 0,25 0,26 0,26 0,25 0,25	0,56 0,58 0,58 0,58 0,58 0,61 0,61	0,41 0,42 0,44 0,41 0,43 0,42	-158,71 -158,46 -158,40 -158,40 -158,54 -158,54	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60	0,00 0,00 0,00 0,00 0,00 0,00	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63	No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00	0 0 0 0 0			
18 19 20 21 22 23	01/01/2015 02/01/2015 03/01/2015 04/01/2015 05/01/2015 06/01/2015 07/01/2015	5,35 4,80 2,68 2,97 2,97 2,97 2,66 2,75	0,24 0,25 0,26 0,26 0,25 0,25 0,26 0,26	0,56 0,58 0,58 0,58 0,61 0,61 0,61 0,60	0,41 0,42 0,44 0,41 0,43 0,42 0,43	-158,71 -158,46 -158,40 -158,40 -158,54 -158,60 -158,70	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50	No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70	0 0 0 0 0 0 0			
18 19 20 21 22 23 24	01/01/2015 02/01/2015 03/01/2015 04/01/2015 05/01/2015 06/01/2015 07/01/2015 08/01/2015	5,35 4,80 2,68 2,97 2,97 2,66 2,75 2,66	0,24 0,25 0,26 0,26 0,25 0,26 0,26 0,26 0,25	0,56 0,58 0,58 0,58 0,61 0,61 0,60 0,58	0,41 0,42 0,44 0,41 0,43 0,42 0,43 0,42	-158,71 -158,46 -158,40 -158,40 -158,54 -158,54 -158,60 -158,70 -158,75	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00 -136,70	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50 20.615,44	No No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70 22,05				
18 19 20 21 22 23 24 25	01/01/2015 02/01/2015 03/01/2015 05/01/2015 05/01/2015 07/01/2015 08/01/2015 08/01/2015 09/01/2015	5,35 4,80 2,68 2,97 2,97 2,66 2,75 2,66 3,25	0,24 0,25 0,26 0,26 0,25 0,26 0,26 0,26 0,25 0,23	0,56 0,58 0,58 0,61 0,61 0,60 0,58 0,58	0,41 0,42 0,44 0,41 0,43 0,42 0,43 0,42 0,43	-158,71 -158,46 -158,40 -158,40 -158,54 -158,60 -158,70 -158,75 -158,70	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00 -136,70 -136,40	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50 20.615,44 19.630,38	No No No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70 22,05 22,30				
18 19 20 21 22 23 24 25 26	01/01/2015 02/01/2015 03/01/2015 05/01/2015 05/01/2015 07/01/2015 08/01/2015 09/01/2015 10/01/2015	5,35 4,80 2,68 2,97 2,97 2,66 2,75 2,66 3,25 2,75	0,24 0,25 0,26 0,26 0,25 0,26 0,26 0,26 0,25 0,23 0,23	0,56 0,58 0,58 0,61 0,61 0,60 0,58 0,58 0,58 0,58	0,41 0,42 0,44 0,41 0,43 0,42 0,43 0,42 0,43 0,42 0,47	-158,71 -158,46 -158,40 -158,40 -158,54 -158,60 -158,70 -158,75 -158,70 -158,83	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00 -136,70 -136,40 -128,50	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50 20.615,44 19.630,38 22.102,59	No No No No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70 22,05 22,30 30,33				
18 19 20 21 22 23 24 25 26 27	01/01/2015 02/01/2015 03/01/2015 05/01/2015 06/01/2015 07/01/2015 08/01/2015 09/01/2015 10/01/2015 11/01/2015	5,35 4,80 2,68 2,97 2,97 2,66 2,75 2,66 3,25 2,75 2,75 2,74	0,24 0,25 0,26 0,26 0,25 0,26 0,26 0,25 0,23 0,23 0,23 0,24	0,56 0,58 0,58 0,61 0,61 0,60 0,58 0,58 0,58 0,58 0,61 0,63	0,41 0,42 0,44 0,41 0,43 0,42 0,43 0,42 0,43 0,42 0,47 0,45 0,47	-158,71 -158,46 -158,40 -158,40 -158,54 -158,60 -158,70 -158,75 -158,70 -158,83 -158,97	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00 -136,70 -136,40 -128,50 -129,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50 20.615,44 19.630,38 22.102,59 25.166,94	No No No No No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70 22,05 22,30 30,33 29,97				
18 19 20 21 22 23 24 25 26 27 28	01/01/2015 02/01/2015 03/01/2015 05/01/2015 05/01/2015 07/01/2015 08/01/2015 09/01/2015 10/01/2015 11/01/2015 12/01/2015	5,35 4,80 2,68 2,97 2,97 2,66 2,75 2,66 3,25 2,75 2,74 2,74 2,72	0,24 0,25 0,26 0,26 0,25 0,26 0,26 0,25 0,23 0,23 0,23 0,23 0,24 0,24	0,56 0,58 0,58 0,61 0,61 0,61 0,60 0,58 0,58 0,58 0,61 0,63 0,63	0,41 0,42 0,44 0,41 0,43 0,42 0,43 0,42 0,43 0,42 0,47 0,45 0,47	-158,71 -158,46 -158,40 -158,54 -158,54 -158,60 -158,70 -158,75 -158,70 -158,83 -158,97 -158,98	-157,30 -156,70 -123,50 -122,50 -120,70 -121,60 -105,00 -136,70 -136,40 -128,50 -129,00 -105,90	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	17.369,30 19.543,26 21.673,64 21.818,52 21.899,93 21.423,63 21.485,50 20.615,44 19.630,38 22.102,59 25.166,94 24.881,12	No No No No No No No No No No No	1,41 1,76 34,90 35,90 37,84 37,00 53,70 22,05 22,30 30,33 29,97 53,08				

Sample data: Primary LNG Tank **Pumps operating flow** over lifetime Data pre-processing for model imput: Estimating % Time within pump flow optimal range (over & under)

		Pumps			Porc	entaje de tier	npo de opera	ción en el rar	igo { "Tiempo	en funcionar	niento en ran	go/tiempo tot	al de operacio	ón"}
		Bomba		GA-101-A			GA-101-B			GA-101-C	GA-101-D			
		Flow	Dentro de	Por encima	Por debajo	Dentro del	Por encima	Por debajo	Dentro del	Por encima	Por debajo	Dentro del	Por encima	Por
		Caudal	rango	del rango	del rango	rango	del rango	del rango	rango	del rango	del rango	rango	del rango	de
		(M3/h)	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	óptimo	ó
		(wishi)	116 - 136	mayor que	inferior que	116 a 135	mayor que	inferior que	116 a 135	mayor que	inferior que			
			110 a 150	135	116	110 a 155	135	116	110 a 155	135	116			
		T1 (0	4 0	0,6) 0	0	1						
	2015	T2	0,571428	7 0	0,42857143	0	0	1						
	2013	T3	0	5 0	0,5	0,05882353	0	0,94117647						
Periodos		T4	0,1111111	1 0	0,88888889	0,02564103	0	0,97435897	0	0	1			
renouos		T1	0	2 0	0,8	0,04347826	0	0,95652174	0,66666667	0	0,33333333			
	2016	T2	0,06666666	7 0	0,93333333	0,083333333	0	0,91666667	1	0	0			
	2010	T3	0,1176470	6 0	0,88235294	0,11363636	0	0,88636364	0,25	0,125	0,625			
		T4		0 0	1	0,14285714	0	0,85714286	0,33333333	0	0,66666667			

40% of the time within the optimal range during this period (1st Q 2015)

60% of the time below the optimal range during this period (1st Q 2015)

Sample data: Primary LNG Tank Pumps

Full data prepared for model input:

Estimating impact/weight intervals of each health modifier over time

	I				Health Modifiers	Reliability Modifiers							
Periods:(Year/Qu arter)			FLOW [1-1,4]	INTAKE TEMPERATURE [1-1,4]	INCREMENT IN TEMPERATURE [1-1,5] TANK LEVEL [1-1,2]		Nº START-UPS [1-1,5]	NO ACTIVITY [1-1,1]	MANUFACTURER [0,95-1,05]	MAJOR MAINTENANCES [1-1,1]			
	т1 🤇	1,24		1,00	1,00		1,00	1,10	1,10	0,95	1,10		
2015	T2		1,17	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
	Т3		1,20	1,00	1,00	1,00		1,10	1,10	0,95	1,10		
	T4		1,36	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
	T1		1,32	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
2016	T2		1,37	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
2010	Т3		1,35	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
	T4		1,40	1,00	1,00		1,00	1,10	1,10	0,95	1,10		
								ow tank leve	el may have a	a	Number of u		

weight of [1-1.2] as impact

on asset degradation over

time. Half the impact of

wrong flow.

Flow without optimal limits may have a weight of [1-1.4] as impact on asset degradation over time

Number of major maintenances has a weight of [1-1.1] as impact on asset degradation over time. 25% the impact of wrong flow.

	Identificación					
Activo (Tag):		GA 115 J				
Ubicación:		Planta Huelva Línea 72 bar				
Modelo y fabricante:		60788R, ARGO-TECH/J.C.CARTER				
Factor de carga:		0,81				
Factor de emplazamiento:		1				
Vida normal esperada:		19,400				
Horas totales de operación:	Histórico	29.518				
Horas de operación desde últ	imo gran mtto.:	740				
Nº grandes mttos.:	1					

			He	alth Modifi	ers		Re	liability M	lodifiers	Data Retrieved for the AHÍ Assessment										
Periods: (Year/Quarter)		FLOW [1-1,4]	INTAKE TEMPERATUR E [1-1,4]	INCREMENT in TEMPERATUR E [1-1,5]	TANK LEVEL [1-1,2]	Nº START-UPS [1-1,5]	NO ACTIVITY [1-1,1]	MANUFACTURE R [0,95-1,05]	MAJOR MAINTENANCES [1-1,1]	Estimated Life	Real Load	Real vs Expected Load	Estimated Life	Toperating time	Tiime since last maintenan ce	AIHIi	lhi_Real	Health Modifier	Reliability Modifier	АНІ
	T1	1,12	1,00	1,00	1,00	1,3	1,00	0,95	1,00	24.062	0,83	1,03	23.355	2129,0	25.931	6,63	7,16	1,24	1,00	8,86
2015	Т2	1,06	1,00	1,00	1,00	1,3	1,00	0,95	1,00	24.062	0,84	1,04	23.193	1365,5	27.296	7,59	8,41	1,16	1,00	9,77
2015	Т3	1,00	1,00	1,00	1,00	1,3	1,10	0,95	1,00	24.062	0,81	1,00	24.062	0,02	27.296	7,59	7,59	1,10	1,10	9,77
	Т4	1,00	1,00	1,00	1,00	1,3	1,10	0,95	1,00	24.062	0,81	1,00	24.062	0,00	27.296	7,59	7,59	1,10	1,10	9,77
	T1	1,00	1,00	1,00	1,00	1,3	1,10	0,95	1,00	24.062	0,81	1,00	24.062	0,11	27.296	7,59	7,59	1,10	1,10	9,77
2016	Т2	1,00	1,00	1,00	1,00	1,10	1,10	0,95	1,00	24.062	0,81	1,00	24.062	0,37	0	0,50	0,50	1,10	1,10	0,61
2016	Т3	1,24	1,00	1,00	1,00	1,10	1,10	0,95	1,00	24.062	0,81	1,01	23.921	119,32	119	0,51	0,51	1,36	1,10	0,76
	T4	1,03	1,00	1,00	1,00	1,10	1,05	0,95	1,00	24.062	0,83	1,02	23.508	621,07	740	0,54	0,54	1,13	1,05	0,76

ELA INGENIERÍA DE MANTENIMIE

• Comparisson per same equipment category

• Global Comparison for all equipment

New book release in Arabic:

Celebrating a 6 years of Partnership 2012-2017 ✓

